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DELTA LAKE AND 
MICROSERVICES
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Evolving our data store to handle increasing 
complexity and volume of communication data
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SEMI-STRUCTURED 
COMMUNICATION DATA 
WITH DELTA LAKE AND 
MICROSERVICES
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VOLUME AND COMPLEXITY
Short message data is the new normal

430%
Increase in Short 
Message Data YoY
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VOLUME AND COMPLEXITY
Challenges scaling for individual message volume

Web Jobs and Services
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NEW DATA STORE
Scaling for volume and complexity
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• I've worked at Relativity for 11 
years.

• .NET, SQL Server, and front-end 
full stack

• Distributed systems, 
Kubernetes, Spark

• Data Engineering and Machine 
Learning
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ALEX WILCOXSON
Staff Software Engineer
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• I’ve worked as a developer at 
Relativity for 7 years

• Originally started with DevOps, 
then onto C# and JS and finally 
into Scala and Rust

• Worked with AI/Analytics/Big 
data for the past 5 years
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GREG OTT
Staff Software Engineer
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• Introduction to RelativityOne and short message data

• Architecture overview: Dive into the tech stack

• Deep dive into system and lessons learned

• Closing remarks and next steps
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AGENDA
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RELATIVITY AND 
SHORT MESSAGE 
DATA
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WHAT IS RELATIVITYONE?

Ingest email data for 
case into RelativityOne
workspace

Cull and analyze 
dataset with search 
and text analytics

Human relevance 
annotations

AI relevance 
annotations

Produce relevant 
documents and 
present at deposition, 
hearing, or trial

Example workflow
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FILE 1

Messages as documents?

[{
"date": "2024-06-09",
"body": "Hey Greg! I'm going to DAIS this year, are you?",
"participant": "Alex"

}, {
"date": "2024-06-09",
"body": "Hey Alex, I am. Want to catch up?",
"participant": "Greg"

}, {
"date": "2024-06-09",
"body": "Sure, how about coffee on Tuesday?",
"participant": "Alex",
"reactions": [{
"emoji": ":thumbsup:",
"participant": "Greg"

}]
}]

SHORT MESSAGE DATA
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FILE 2

[{
"date": "2024-06-11",
"body": "Hey Greg, meet at 9?",
"participant": "Alex"

}, {
"date": "2024-06-11",
"body": "Greg?",
"participant": "Alex"

}, {
"date": "2024-06-11",
"body": "Greg where are you?!",
"participant": "Alex"

}]
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THE RELATIVITY REVIEW INTERFACE
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ARCHITECTURE 
OVERVIEW AND 
TECHNOLOGY 
SELECTION
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ARCHITECTURE OVERVIEW
Evolving RelativityOne's Data Platform
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ARCHITECTURE OVERVIEW
Evolving RelativityOne's Data Platform
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ARCHITECTURE OVERVIEW
Evolving RelativityOne's Data Platform
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• Columnar

• Compression, encodings

• Schema

• Statistics, metadata

• Arrow integration
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PARQUET
Columnar storage
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• Columnar, vectorized

• Encoding

• Schema
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ARROW
In-memory columnar



©2024 Databricks Inc. — All rights reserved

• Columnar, vectorized

• Encoding

• Schema

• Flight gRPC

• DataFusion's format
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ARROW
In-memory columnar
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• More of a library

• Extensible, reusable

• Columnar, vectorized (Arrow!)

• Delta Lake Rust integration
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DATAFUSION
Embeddable Query Engine
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• Commits, transactions

• Schema evolution

• Optimizations
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DELTA LAKE
Table framework for Parquet
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• Commits, transactions

• Schema evolution

• Optimizations

• Rust standalone

• Statistics, metadata

• Data skipping

• DataFusion example
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DELTA LAKE
Table framework for Parquet
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DATAFUSION QUERY
Example of delta-rs DataFusion integration
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DATAFUSION QUERY
Example of delta-rs DataFusion integration
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DATAFUSION QUERY
Example of delta-rs DataFusion integration
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DATAFUSION QUERY
Example of delta-rs DataFusion integration
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ARCHITECTURE RECAP
Scalable, structured, high throughput, multi-tenant storage system
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DATA INGESTION
CHALLENGES
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DATA INGESTION
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DATA INGESTION
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INGESTION CHALLENGES
Too much concurrency!
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INGESTION CHALLENGES
Too much concurrency!
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INGESTION CHALLENGES
Too much concurrency!
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INGESTION CHALLENGES
Too much concurrency!
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INGESTION CHALLENGES
Too much concurrency!
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INGESTION SOLUTION
Supporting low latency scalable puts
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HOW IS IT WORKING?

Percentile Put Latency

50 90ms

95 132ms

99 204ms

Analyzing early production metrics (April)

Put Requests 3M

Failures 54

Rows Written 85M

Bytes Written 121GB
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STRATEGIES AND 
OPTIMIZATIONS 
FOR DATA READS
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Review Annotations Search Indexing
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HOW IS THE DATA USED?

• Clients expect to be able to 
view batches of messages 
quickly

• They might also expect to be 
able to slice the messages in 
different ways

• Message annotations – such as 
notes and flags – will come 
in as messages are reviewed

• These annotations will be 
attached to individual 
messages

• Automated tools at Relativity 
will be retrieving messages in 
bulk for indexing

• Small updates will have to 
happen as messages are 
annotated

Use cases for short message data after it's imported
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FOCUSING ON THE CLIENT WORKFLOW
Discussing optimizations to handle incoming annotations
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THE RELATIVITY REVIEW INTERFACE
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OUR WRITE AHEAD LOG
The update and delete log tables allow for massively parallel updates
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• Update log is append-only, 
avoids conflicts between 2 
processes attempting to update 
the same table

• Query plan folds in updates 
based on most recent updates 
per field/message

• Query planning is very fast –
peak read throughput is 150k 
rows per second
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UPDATE LOG PERFORMANCE
The update log allows us to support thousands of concurrent annotations

ID Field Value

1 Useful False

1 Useful True

1 Notes Some notes

2 Useful False

1 Notes Some notes. Another sentence.

3 Notes Another note

2 Notes Yet another note
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UPDATE LOG CONTINUED
Bit maps for merging data

ID Useful Notes Bit map

1 False 10

1 True 10

2 Some notes 
here 01

1 False Some more 
notes 11
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BYTE RANGE CACHING
Optimizations around caching reduce our data retrieval latency by 50%

• We implemented a caching layer for 
parquet loads

• Caching accepts the column/byte range 
and parquet or checkpoint file path as a 
key

• Since parquet files and checkpoints are 
never altered once on disk, cache 
invalidation can be handled naturally as 
new cache entries evict old ones



©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 46

DATA HYGIENE: 
SCHEDULED 
MAINTENANCE JOBS
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A LOOK AT THE MAINTENANCE JOB
Our service relies on a background maintenance job to optimize
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• We run a maintenance job in 
Spark on a schedule

• This maintenance job handles 
data cleanup: optimize, vacuum, 
update log flush

• Optimize reduces data volume 
by >90%

• Maintenance job first flushes the 
update and delete logs into the content 
table

• Next, it optimizes the tables. The 
content table is optimized with z-order.

• Next, old commits are cleared out. This 
is done automatically in Spark, unlike 
Rust.

• Finally, tables are vacuumed to remove 
unused parquet files
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METADATA MAINTENANCE JOB
We use a Spark maintenance job to handle data hygiene
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STARTING STATE OF THE TABLES
Many update commits, few content commits and fewer delete commits



©2024 Databricks Inc. — All rights reserved 50

UPDATE AND DELETE LOG FLUSH
Some data in the content table is updated
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OPTIMIZED AND Z-ORDERED
One (or more) new commit and data file per table
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OLD COMMITS CLEARED OUT
Parquet files remain
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OLD DATA FILES CLEARED OUT
Tables are now returned to a clean state
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A FINAL LOOK AT THE ARCHITECTURE
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CLOSING REMARKS 
AND FUTURE 
POSSIBILITES
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• Excited about future of this emerging tech and ecosystem

• Looking forward to applying it to more data types and RelativityOne
workflows

• Shout-out to the delta-rs, DataFusion, and arrow-rs maintainers and the 
various communities for their support
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CLOSING REMARKS
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