
©2024 Databricks Inc. — All rights reserved

Alex Wilcoxson and Greg Ott
2024-06-10

1

DELTA LAKE AND 
MICROSERVICES



©2024 Databricks Inc. — All rights reserved

Evolving our data store to handle increasing 
complexity and volume of communication data

2

SEMI-STRUCTURED 
COMMUNICATION DATA 
WITH DELTA LAKE AND 
MICROSERVICES



©2024 Databricks Inc. — All rights reserved 3

VOLUME AND COMPLEXITY
Short message data is the new normal

430%
Increase in Short 
Message Data YoY



©2024 Databricks Inc. — All rights reserved 4

VOLUME AND COMPLEXITY
Challenges scaling for individual message volume

Web Jobs and Services



©2024 Databricks Inc. — All rights reserved 5

NEW DATA STORE
Scaling for volume and complexity



©2024 Databricks Inc. — All rights reserved

• I've worked at Relativity for 11 
years.

• .NET, SQL Server, and front-end 
full stack

• Distributed systems, 
Kubernetes, Spark

• Data Engineering and Machine 
Learning

6

ALEX WILCOXSON
Staff Software Engineer



©2024 Databricks Inc. — All rights reserved

• I’ve worked as a developer at 
Relativity for 7 years

• Originally started with DevOps, 
then onto C# and JS and finally 
into Scala and Rust

• Worked with AI/Analytics/Big 
data for the past 5 years

7

GREG OTT
Staff Software Engineer



©2024 Databricks Inc. — All rights reserved

• Introduction to RelativityOne and short message data

• Architecture overview: Dive into the tech stack

• Deep dive into system and lessons learned

• Closing remarks and next steps

8

AGENDA



©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 9

RELATIVITY AND 
SHORT MESSAGE 
DATA



©2024 Databricks Inc. — All rights reserved 10

WHAT IS RELATIVITYONE?

Ingest email data for 
case into RelativityOne
workspace

Cull and analyze 
dataset with search 
and text analytics

Human relevance 
annotations

AI relevance 
annotations

Produce relevant 
documents and 
present at deposition, 
hearing, or trial

Example workflow



©2024 Databricks Inc. — All rights reserved

FILE 1

Messages as documents?

[{
"date": "2024-06-09",
"body": "Hey Greg! I'm going to DAIS this year, are you?",
"participant": "Alex"

}, {
"date": "2024-06-09",
"body": "Hey Alex, I am. Want to catch up?",
"participant": "Greg"

}, {
"date": "2024-06-09",
"body": "Sure, how about coffee on Tuesday?",
"participant": "Alex",
"reactions": [{
"emoji": ":thumbsup:",
"participant": "Greg"

}]
}]

SHORT MESSAGE DATA

11

FILE 2

[{
"date": "2024-06-11",
"body": "Hey Greg, meet at 9?",
"participant": "Alex"

}, {
"date": "2024-06-11",
"body": "Greg?",
"participant": "Alex"

}, {
"date": "2024-06-11",
"body": "Greg where are you?!",
"participant": "Alex"

}]



©2024 Databricks Inc. — All rights reserved 12

THE RELATIVITY REVIEW INTERFACE



©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 13

ARCHITECTURE 
OVERVIEW AND 
TECHNOLOGY 
SELECTION



©2024 Databricks Inc. — All rights reserved 14

ARCHITECTURE OVERVIEW
Evolving RelativityOne's Data Platform



©2024 Databricks Inc. — All rights reserved 15

ARCHITECTURE OVERVIEW
Evolving RelativityOne's Data Platform



©2024 Databricks Inc. — All rights reserved 16

ARCHITECTURE OVERVIEW
Evolving RelativityOne's Data Platform



©2024 Databricks Inc. — All rights reserved

• Columnar

• Compression, encodings

• Schema

• Statistics, metadata

• Arrow integration

17

PARQUET
Columnar storage



©2024 Databricks Inc. — All rights reserved

• Columnar, vectorized

• Encoding

• Schema

18

ARROW
In-memory columnar



©2024 Databricks Inc. — All rights reserved

• Columnar, vectorized

• Encoding

• Schema

• Flight gRPC

• DataFusion's format

19

ARROW
In-memory columnar



©2024 Databricks Inc. — All rights reserved

• More of a library

• Extensible, reusable

• Columnar, vectorized (Arrow!)

• Delta Lake Rust integration

20

DATAFUSION
Embeddable Query Engine



©2024 Databricks Inc. — All rights reserved

• Commits, transactions

• Schema evolution

• Optimizations

21

DELTA LAKE
Table framework for Parquet



©2024 Databricks Inc. — All rights reserved

• Commits, transactions

• Schema evolution

• Optimizations

• Rust standalone

• Statistics, metadata

• Data skipping

• DataFusion example

22

DELTA LAKE
Table framework for Parquet



©2024 Databricks Inc. — All rights reserved 23

DATAFUSION QUERY
Example of delta-rs DataFusion integration



©2024 Databricks Inc. — All rights reserved 24

DATAFUSION QUERY
Example of delta-rs DataFusion integration



©2024 Databricks Inc. — All rights reserved 25

DATAFUSION QUERY
Example of delta-rs DataFusion integration



©2024 Databricks Inc. — All rights reserved 26

DATAFUSION QUERY
Example of delta-rs DataFusion integration



©2024 Databricks Inc. — All rights reserved 27

ARCHITECTURE RECAP
Scalable, structured, high throughput, multi-tenant storage system



©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 28

DATA INGESTION
CHALLENGES



©2024 Databricks Inc. — All rights reserved 29

DATA INGESTION



©2024 Databricks Inc. — All rights reserved 30

DATA INGESTION



©2024 Databricks Inc. — All rights reserved 31

INGESTION CHALLENGES
Too much concurrency!



©2024 Databricks Inc. — All rights reserved 32

INGESTION CHALLENGES
Too much concurrency!



©2024 Databricks Inc. — All rights reserved 33

INGESTION CHALLENGES
Too much concurrency!



©2024 Databricks Inc. — All rights reserved 34

INGESTION CHALLENGES
Too much concurrency!



©2024 Databricks Inc. — All rights reserved 35

INGESTION CHALLENGES
Too much concurrency!



©2024 Databricks Inc. — All rights reserved 36

INGESTION SOLUTION
Supporting low latency scalable puts



©2024 Databricks Inc. — All rights reserved 37

HOW IS IT WORKING?

Percentile Put Latency

50 90ms

95 132ms

99 204ms

Analyzing early production metrics (April)

Put Requests 3M

Failures 54

Rows Written 85M

Bytes Written 121GB



©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 38

STRATEGIES AND 
OPTIMIZATIONS 
FOR DATA READS



©2024 Databricks Inc. — All rights reserved

Review Annotations Search Indexing

39

HOW IS THE DATA USED?

• Clients expect to be able to 
view batches of messages 
quickly

• They might also expect to be 
able to slice the messages in 
different ways

• Message annotations – such as 
notes and flags – will come 
in as messages are reviewed

• These annotations will be 
attached to individual 
messages

• Automated tools at Relativity 
will be retrieving messages in 
bulk for indexing

• Small updates will have to 
happen as messages are 
annotated

Use cases for short message data after it's imported



©2024 Databricks Inc. — All rights reserved 40

FOCUSING ON THE CLIENT WORKFLOW
Discussing optimizations to handle incoming annotations



©2024 Databricks Inc. — All rights reserved 41

THE RELATIVITY REVIEW INTERFACE



©2024 Databricks Inc. — All rights reserved 42

OUR WRITE AHEAD LOG
The update and delete log tables allow for massively parallel updates



©2024 Databricks Inc. — All rights reserved

• Update log is append-only, 
avoids conflicts between 2 
processes attempting to update 
the same table

• Query plan folds in updates 
based on most recent updates 
per field/message

• Query planning is very fast –
peak read throughput is 150k 
rows per second

43

UPDATE LOG PERFORMANCE
The update log allows us to support thousands of concurrent annotations

ID Field Value

1 Useful False

1 Useful True

1 Notes Some notes

2 Useful False

1 Notes Some notes. Another sentence.

3 Notes Another note

2 Notes Yet another note



©2024 Databricks Inc. — All rights reserved 44

UPDATE LOG CONTINUED
Bit maps for merging data

ID Useful Notes Bit map

1 False 10

1 True 10

2 Some notes 
here 01

1 False Some more 
notes 11



©2024 Databricks Inc. — All rights reserved 45

BYTE RANGE CACHING
Optimizations around caching reduce our data retrieval latency by 50%

• We implemented a caching layer for 
parquet loads

• Caching accepts the column/byte range 
and parquet or checkpoint file path as a 
key

• Since parquet files and checkpoints are 
never altered once on disk, cache 
invalidation can be handled naturally as 
new cache entries evict old ones



©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 46

DATA HYGIENE: 
SCHEDULED 
MAINTENANCE JOBS



©2024 Databricks Inc. — All rights reserved 47

A LOOK AT THE MAINTENANCE JOB
Our service relies on a background maintenance job to optimize



©2024 Databricks Inc. — All rights reserved

• We run a maintenance job in 
Spark on a schedule

• This maintenance job handles 
data cleanup: optimize, vacuum, 
update log flush

• Optimize reduces data volume 
by >90%

• Maintenance job first flushes the 
update and delete logs into the content 
table

• Next, it optimizes the tables. The 
content table is optimized with z-order.

• Next, old commits are cleared out. This 
is done automatically in Spark, unlike 
Rust.

• Finally, tables are vacuumed to remove 
unused parquet files

48

METADATA MAINTENANCE JOB
We use a Spark maintenance job to handle data hygiene



©2024 Databricks Inc. — All rights reserved 49

STARTING STATE OF THE TABLES
Many update commits, few content commits and fewer delete commits



©2024 Databricks Inc. — All rights reserved 50

UPDATE AND DELETE LOG FLUSH
Some data in the content table is updated



©2024 Databricks Inc. — All rights reserved 51

OPTIMIZED AND Z-ORDERED
One (or more) new commit and data file per table



©2024 Databricks Inc. — All rights reserved 52

OLD COMMITS CLEARED OUT
Parquet files remain



©2024 Databricks Inc. — All rights reserved 53

OLD DATA FILES CLEARED OUT
Tables are now returned to a clean state



©2024 Databricks Inc. — All rights reserved 54

A FINAL LOOK AT THE ARCHITECTURE



©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 55

CLOSING REMARKS 
AND FUTURE 
POSSIBILITES



©2024 Databricks Inc. — All rights reserved

• Excited about future of this emerging tech and ecosystem

• Looking forward to applying it to more data types and RelativityOne
workflows

• Shout-out to the delta-rs, DataFusion, and arrow-rs maintainers and the 
various communities for their support

56

CLOSING REMARKS


	DELTA LAKE AND MICROSERVICES
	SEMI-STRUCTURED COMMUNICATION DATA WITH DELTA LAKE AND MICROSERVICES
	VOLUME AND COMPLEXITY
	VOLUME AND COMPLEXITY
	NEW DATA STORE
	ALEX WILCOXSON
	GREG OTT
	AGENDA
	RELATIVITY AND SHORT MESSAGE DATA
	WHAT IS RELATIVITYONE?
	SHORT MESSAGE DATA
	THE RELATIVITY REVIEW INTERFACE
	ARCHITECTURE OVERVIEW AND TECHNOLOGY SELECTION
	ARCHITECTURE OVERVIEW
	ARCHITECTURE OVERVIEW
	ARCHITECTURE OVERVIEW
	PARQUET
	ARROW
	ARROW
	DATAFUSION
	DELTA LAKE
	DELTA LAKE
	DATAFUSION QUERY
	DATAFUSION QUERY
	DATAFUSION QUERY
	DATAFUSION QUERY
	ARCHITECTURE RECAP
	DATA INGESTION�CHALLENGES
	DATA INGESTION
	DATA INGESTION
	INGESTION CHALLENGES
	INGESTION CHALLENGES
	INGESTION CHALLENGES
	INGESTION CHALLENGES
	INGESTION CHALLENGES
	INGESTION SOLUTION
	HOW IS IT WORKING?
	STRATEGIES AND OPTIMIZATIONS FOR DATA READS
	HOW IS THE DATA USED?
	FOCUSING ON THE CLIENT WORKFLOW
	THE RELATIVITY REVIEW INTERFACE
	OUR WRITE AHEAD LOG
	UPDATE LOG PERFORMANCE
	UPDATE LOG CONTINUED
	BYTE RANGE CACHING
	DATA HYGIENE: SCHEDULED MAINTENANCE JOBS
	A LOOK AT THE MAINTENANCE JOB
	METADATA MAINTENANCE JOB
	STARTING STATE OF THE TABLES
	UPDATE AND DELETE LOG FLUSH
	OPTIMIZED AND Z-ORDERED
	OLD COMMITS CLEARED OUT
	OLD DATA FILES CLEARED OUT
	A FINAL LOOK AT THE ARCHITECTURE
	CLOSING REMARKS AND FUTURE POSSIBILITES
	CLOSING REMARKS

